Degradation of 2,6-dicholorophenol by Trichoderma longibraciatum Isolated from an industrial Soil Sample in Dammam, Saudi Arabia

  • Arora, PK & Bae, H. Bacterial degradation of chlorophenols and their derivatives. Microb. Cell Fact. 1331–36 (2014).

    ArticleGoogle Scholar

  • Solyanikova, IP & Golovleva, LA Bacterial degradation of chlorophenols: Pathways, biochemica, and genetic aspects. J. Environment. Sci. Health B 39333–351 (2004).

    ArticleGoogle Scholar

  • Olaniran, AO & Igbinosa, EO Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes. Chemosphere 831297–1306 (2011).

    ADS CAS Article Google Scholar

  • Kusmierek, K. The removal of chlorophenols from aqueous solutions using activated carbon adsorption integrated with H2O2 oxidation. reaction Kinet. Mech. Cat. 11919–34 (2016).

    CAS Article Google Scholar

  • Igbinosa, E., Odjadjare, E., Vicent, N. & Ideemndia, O. Toxicological profile of chlorophenols and their derivatives in the environment: The public health perspective. Sci. World J. 201311 (2013).

    Google Scholar

  • Hossain, G. & McLaughlan, R. Kinetic investigations of oxidation of chlorophenols by permanganate. J. Environment. Chem. Ecotoxicol 581–89 (2013).

    Google Scholar

  • Ryan, D., Leukes, W. & Burton, S. Improving the bioremediation of phenolic wastewaters by Trametes versicolor. Bioresour. Technol 98579–587 (2016).

    ArticleGoogle Scholar

  • Zhao, L., Wu, Q. & Ma, A. Biodegradation of phenolic contaminants: Current status and perspectives. In International Conference on Advanced Environmental Engineering IOP Publishing. Series: Earth and Environmental Science. Vol 111, 012024 (2018).

  • Walter, M., Boul, L., Chong, R. & Ford, C. Growth substrate selection and biodegradation of PCP by New Zealand white-rot fungi. J. Environment. What. 24(36), 1749–1759 (2004).

    Google Scholar

  • Cameron, MD, Timofeevski, S. & Aust, SD Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. App. microbiol. Biotechnol. 54751–758 (2000).

    CAS Article Google Scholar

  • Tuomela, M., Lyytikainen, M., Oivanena, P. & Hatakka, A. Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungus Trametes versicolor. Soil Biol. Biochem. 3165–74 (1999).

    CAS Article Google Scholar

  • Field, J. & Sierra-Alvarez, R. Microbial degradation of chlorinated phenols. Rev.Environ. Sci.Biotechnol 7211–241 (2008).

    CAS Article Google Scholar

  • Bosso, L. & Cristinzio, GA A comprehensive overview of bacteria and fungi used for pentachlorophenol biodegradation. Rev.Environ. Sci.Biotechnol 13387–427 (2014).

    CAS Article Google Scholar

  • Field, JA & Sierra-Alvarez, R. Microbial transformation and degradation of polychlorinated biphenyls. Environment. Pollut 1551–12 (2008).

    CAS Article Google Scholar

  • Nikolaivits, E. et al. Degradation mechanism of 2,4-dichlorophenol by fungi isolated from marine invertebrates. Int. J. Mol. science twenty-one3317. https://doi.org/10.3390/ijms21093317 (2020).

    CAS Article PubMed Central Google Scholar

  • Cser-jesi, AJ & Johnson, E. Methylation of entachlorophenol by Trichoderma virgatum. Dog. J. Microbiol. 1845–49 (1972).

    CAS Article Google Scholar

  • van Leeuwen, J., Nicholson, B., Hayes, K. & Mulcahy, D. Degradation of chlorophenolic compounds by Trichoderma harzianum isolated from Lake Bonney, South-Eastern South Australia. Environment Toxicol. WaterQual. 12335–342 (1997).

    ADS Article Google Scholar

  • Carvalho, MB et al. Screening pentachlorophenol degradation ability by environmental fungal strains belonging to the phyla Ascomycota and Zygomycota. J. Ind. Microbiol. Biotechnol. 361249–1256 (2009).

    CAS Article Google Scholar

  • Chakroun, H., Mechichi, T., Martinez, MJ, Dhouib, A. & Sayadi, S. Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride: Application on bioremediation of phenolic compounds. Process Biochem. Four. Five507–513 (2010).

    CAS Article Google Scholar

  • Abdel-Fatah, O.M. et al. Physiological studies on carboxymethyl cellulase formation by Aspergillus terreus DSM 826. Arm. J. Microbiol. 43(1), 01–11 (2012).

    CAS Article Google Scholar

  • Sonika, P. et al. Trichoderma species cellulases produced by solid state fermentation. J. Data Min. Genom. Proteom. 62 (2015).

    Google Scholar

  • Al-Hawash, BA et al. Isolation and characterization of two crude oil-degrading fungi strains from Rumaila oil field. Iraq. Biotechnol. Rep 17, 104–109. https://doi.org/10.1016/j.btre.2017.12.006 (2018).

    ArticleGoogle Scholar

  • Zafra, G., Absalón, AE & Cortes-Espinosa, DV Morphological changes and growth of filamentous fungi in the presence of high concentrations of PAHs. Arm. J.Microbiol 46, 937–941. https://doi.org/10.1590/S1517-838246320140575 (2015).

    CAS Article PubMed PubMed Central Google Scholar

  • Smit, E., Leeflang, P., Glandorf, B., van Elsas, JD & Wernars, K. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. App. Environment. microbiol. 65(6), 2614–2621 (1999).

    ADS CAS Article Google Scholar

  • White, TJ Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal genes. In PCR Protocols: A Guide to Methods and Applications 315–22 (1990).

  • Ryu, W.R. et al. Biodegradation of white rot fungi under ligninolytic and nonligninolytic conditions. Biotechnol Bioproc. AND 5211–214 (2000).

    CAS Article Google Scholar

  • Dubois, K., Gilles, J., Hamilton, P., Rebers, A. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28350–356 (1956).

    CAS Article Google Scholar

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301 (2021).

    CAS Article PubMed PubMed Central Google Scholar

  • Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol.Evol. 33(7), 1870–1874 (2016).

    CAS Article Google Scholar

  • Statistical Packages for Software Sciences. Version 21.0 Armonk (New York: IBM Corporation, 2013).

  • Lin, S.-H. & Juang, R.-S. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. J. Environment. Manage 90, 1336–1349. https://doi.org/10.1016/j.jenvman.2008.09.003 (2009).

    CAS Article PubMed Google Scholar

  • Kumar, SN, Subbaiah, VM, Reddy, SA & Krishnaiah, A. Biosorption of phenolic compounds from aqueous solutions onto chitosan-abrus precatorius blended beads. J. Chem. Technol. biotechnology 84, 972–981. https://doi.org/10.1002/jctb.2120 (2009).

    CAS Article Google Scholar

  • Wang, CC, Lee, CM, Lu, CJ, Chuang, MS & Huang, CZ Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria. Chemosphere 41, 1873–1879. https://doi.org/10.1016/S00456535(00)00090-4 (2000).

    ADS CAS Article PubMed Google Scholar

  • Kavamura, VN & Esposito, E. Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol. Adv 2861–69 (2010).

    CAS Article Google Scholar

  • Mohsenzade, F., Chehregani, A. & Akbari, M. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils. Iran J. Environ. Health. eng 926–34 (2012).

    ArticleGoogle Scholar

  • Nikolaivits, E. et al. Unraveling the detoxification mechanism of 2,4-dichlorophenol by marine-derived mesophotic symbiotic fungi isolated from marine invertebrates. Mar. Drugs. 17564. https://doi.org/10.3390/md17100564 (2019).

    CAS Article PubMed Central Google Scholar

  • Scientific opinion on risk assessment for a selected group of pesticides from the triazole group to test possible methodologies to assess cumulative effects from exposure through food from these pesticides on human health. EFSAJ. 71167. https://www.efsa.europa.eu/en/efsajournal/pub/1167 (2009).

  • Brotman, Y., Kapuganti, JG & Viterbo, A. Trichoderma. curr. Biol. twentyR390–R439 (2010).

    CAS Article Google Scholar

  • Boroujeni, NA, Hassanshahian, M., Mohammad, S. & Khoshrou, R. Isolation and characterization of phenol degrading bacteria from Persian Gulf. IJABBR two408–416 (2014).

    CASGoogle Scholar

  • Roostaei, N. & Tezel, FH Removal of phenol from aqueous solutions by adsorption. J. Environment. Manage 70, 157–164. https://doi.org/10.1016/j.jenvman.2003.11.004 (2004).

    Article PubMed Google Scholar

  • Demnerova, K. et al. Two approaches to biological decontamination of groundwater and soil polluted by aromatics-characterization of microbial populations. Int. Microbiol 8205–211 (2005).

    CAS PubMed Google Scholar

  • Reddy, GVB & Gold, MH Degradation of pentachlorophenol by Phanerochaete chrysosporium: Intermediates and reactions involved. Microbiology 146405–413 (2000).

    CAS Article Google Scholar

  • Cortés, DV, Bernal, R. & Tomasini, A. Effect of submerged culture conditions on the degradation of pentachlorophenol. Technological information 1275–80 (2001).

    Google Scholar

  • Crawford, RL, Jung, CM & Strap, JL The recent evolution of pentachlorophenol (PCP)-4-monooxygenase (PcpB) and associated pathways for bacterial degradation of PCP. Biodegradation 18525–539 (2007).

    CAS Article Google Scholar

  • Bergauer, P., Fonteyne, PA, Nolard, N., Schinner, F. & Margesin, R. Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts. hemosphere 59909–918 (2005).

    ADS CAS Article Google Scholar

  • Bovio, E. et al. The culturable mycobiota of a Mediterranean marine site after an oil spill: Isolation, identification and potential application in bioremediation. Sci. Total Environment. 576310–318 (2017).

    ADS CAS Article Google Scholar